Membránové Inovační Centrum

Production of edible salt from Carlsbad thermal spring water by electrodialysis

J. Kinčl

16.9.2013, PERMEA, Warszawa Membrain s. r. o., Pod Vinicí 87, 471 27 Stráž pod Ralskem ,e-mail: jan.kincl@membrain.cz

Carlsbad thermal springs

- Springs healing ability discovered by Václav Payer in 1522
- Located in the spa town of Karlovy Vary (Carlsbad), Czech Republic
- Positive effect on digestive tract (liver, stomach, intestine)
- Drinking and bathing cure, wellness procedures
- Drinking cure developed in 18th and 19th century by David Becher, Jean de Carro, Rudolf Mannl, Eduard Hlawacek

ED design:

- ED unit P2 2xEDR-X/100-0.8 with 18.9m² of active membrane area
- Temperature: <40°C controlled by operator (PE limits)
- Voltage: 1.5V/cell
- Circulation flowrate: 5m3/h for both diluate and concentrate
- Safety filter: 100µm (Fe) for both diluate and concentrate
- Manual batch start
- 13 of 79 mineral thermal springs collected and used for drinking cure
- 153,894 spa guests in 2012

Objectives:

- Production of solid crystalline Carlsbader salt for drinking cure at home
- (follow-up the spa treatment at home)
- Food grade quality salt, easily soluble
- Capacity 20m³ spring water daily (8h shift)
- Concentration technology cheaper than evaporator
- Waste water TDS concentration <2.5g/l (disposal limit, salt loss)

Feed:

- Carlsbader spring water
- Delivered in 10m³ stainless steel tanks
- Pretreated and cooled down to 40°C

к [mS/cm]	721	NH ₄ + [mg/l]	< 0.02
pH	8.58	Cl ⁻ [mg/l]	588
TDS [ma/l]	5220	SO 2 [ma/l]	1610

Automatic batch control (batch end, constant concentrate conductivity,

voltage and current limits)

ED product:

Concentrated aqueous salt

stream

- NaHCO₃ type
- Detail composition --->
- **19x concentrated**
- \checkmark low volume

✓ low transport costs

Density	kg/m ³	1052	S
Conductivity	mS/cm	61.8	S S C F
рН		8.57	C
TDS (105°C)	mg/l	102000	F
TS (180°C)	mg/l	62220	F
TDS (550°C)	mg/l	61400	C
TSS	mg/l	112	C
Na+	mg/l	24000	C F
K+	mg/l	1070	F
Ca ²⁺	mg/l	8.07	Ν
Mg ²⁺	mg/l	17.3	C
Ba ²⁺	mg/l	0.685	

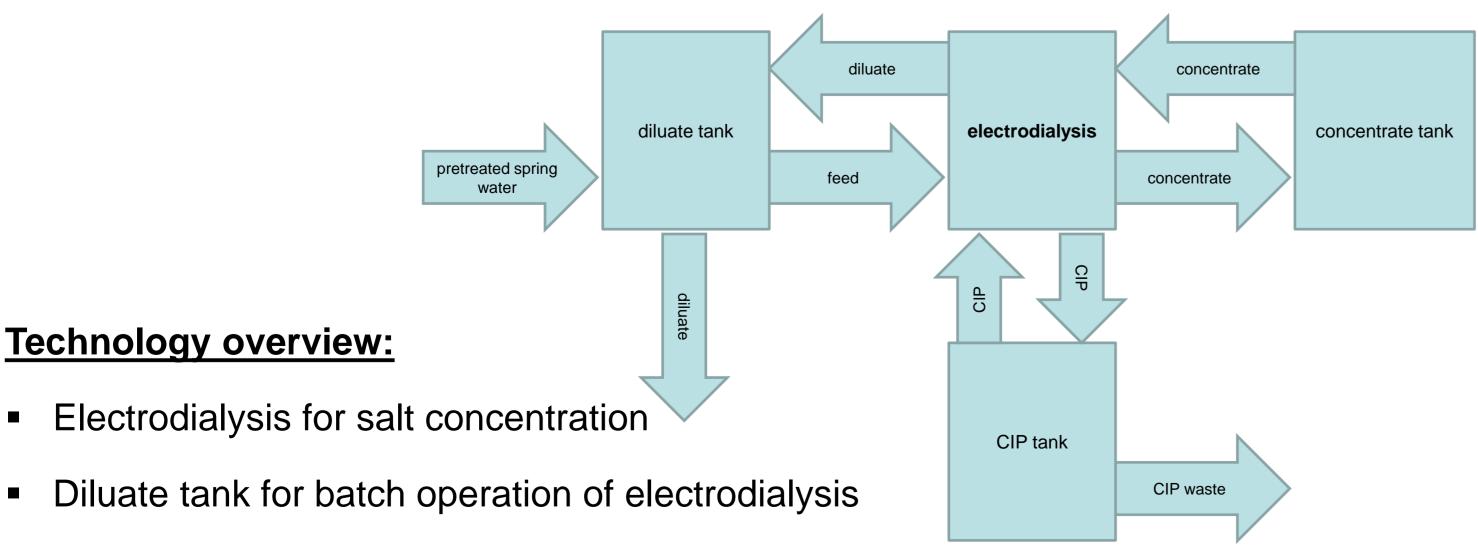
2	Sr ²⁺	mg/l	0.11
	SO4 ²⁻	mg/l	20500
	CI	mg/l	7950
00	F⁻	mg/l	93.2
0	HCO ₃ -	mg/l	20400
0	CO ₃ ²⁻	mg/l	1360
	CO ₂ total	mg/l	17600
0	P total	mg/l	N/A
)	Fe total	mg/l	0.488
	Mn total	mg/l	0.05
	CHSK _{Cr}	mg/l	1440
_			

	DS [IIIg/I]	5520		1010
C	COD _{Cr} [mgO ₂ /l]	11.8	HCO ₃ ⁻ [mg/l]	2000
C	Ca ²⁺ [mg/l]	1.51	CO ₃ ²⁻ [mg/l]	30.3
Ν	/lg ²⁺ [mg/l]	0.047	F ⁻ [mg/l]	6.28
E	3a ²⁺ [mg/l]	<0.0005	NO ₃ ⁻ [mg/l]	<0.5
S	Sr ²⁺ [mg/l]	<0.001	Total Si [mg/l]	43.4
Γ	Na+ [mg/l]	1943	Total P [mg/l]	0.06
k	<+ [mg/l]	0.56	Total Fe [mg/l]	0.06
L	_i+ [mg/l]	0.402	Total Mn [mg/l]	0.001

Feed water analysis

ED design by laboratory tests

- ED unit P EDR-Z/10-0.8 with 0.064m² active membrane area (own production)
- Membranes: anion exchange Ralex[®] AMH-PES, cation exchange Ralex[®] CMH-PES
- Estimation of concentrate conductivity limit (salt precipitation)
- Gradual increase of concentrate conductivity until scaling occurs (visual control of disassembled ED stack), 7 batch tests
- Estimation of ED capacity dependence on diluate conductivity
- Batch test at concentrate conductivity limit
- Scale-up to industrial size unit (own production)



Final product:

- Evaporate and dry ED product
- Dry solid Carlsbader salt, 3g/package
- To follow-up the drinking cure at home
- Drinking dissolved in tap water at 0,4-5,2% concentration
- Mineral water production at 0,3-1,5g/l
- Additive for food industry (bakery, pastry)

Major		Trace	
ions	g/kg	elements	mg/kg
Na+	314.0	Li+	440
K+	13.7	Ca ²⁺	394
SO42-	275.0	Si	388
HCO ₃ -	241.0	Mg ²⁺	95.5

- Concentrate tank for product storage prior transport to evaporator
- Desalinated water (diluate) discharged to the drain after each batch
- CIP tank for ED chemical cleaning and conservation

CI	104.0	Ρ	12.1
CO32-	42.6	Fe	6.36
		Mn	0.34
		Ba ²⁺	0.30

Final product analysis

Conclusion:

- Industrial ED unit design based on laboratory ED tests
- Scale-up ratio 300:1 still working OK for ED
- Salt produced by the company Original Karlsbader Sprudelsalz since May 2012
- No problems with the technology yet